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Mn"(GH3)2
2_ with GH3

2" representing the dianion of gluconic acid which 
results from the removal of the carboxylate proton and one of the sec­
ondary alcoholic protons. 

(13) A study of the reactivity of III and IV with various organic functional 
groups is in progress to test this proposition. However, the 60% de­
crease of III in 2 hr from Ar purging for a 0.6 mF solution in contrast to a 
20% decrease in 4 hr for a 5 mF solution indicates that reversible O2 
binding is the dominant process at lower concentrations of III. 

(14) W. M. Latimer, "Oxidation Potentials", 2nd ed, Prentice-Hall, New York, 
N.Y., 1952, p 39. 
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Preparation of l,3-Oxazin-6-one. A Potential 
Precursor to Azacyclobutadiene 

Sir: 

Despite divers reports concerning derivatives of l,«-oxa-
zin-6-ones ("aza-a-pyrones"), in no case has the synthesis 
of the parent species been realized.1 These systems (which 
are potential precursors to the unknown azacyclobutad­
iene2'3) by analogy with the chemistry of a-pyrone,4 hold 
the promise of entry to the dihydropyridine manifold. They 
are also substantial curiosities in and of themselves, because 
of the presence of imine and ester functionality in a unique 
cyclic array. 

The preparation of l,3-oxazin-6-one (1) has now been 
achieved via a novel route involving pyrolysis of trans-3-
ethoxycarbonylamirioprop-2-enal (2) (Scheme I). The car­
bamate 2 was prepared by dropwise addition of ethyl chlo-
roformate (3) to a (0°) cooled solution of equivalent 
amounts (0.05 mol) of /3-aminoacrolein5 (4) and triethyl-
amine in 30 ml of acetonitrile. After being stirred at 25° for 
10 hr, 50 ml of ether was added to the mixture, which was, 
in turn, refrigerated overnight, filtered, and concentrated. 
Purification of the residue by silica gel chromatography 
(ether-pentane, 1:10) followed by recrystallization from 
ether-pentane, gave the colorless solid 2: mp 67-68° (lit.6 

mp 66-67°); 86%; NMR (CDCl3), 51.34 (3 H, t, J = 7.5 
Hz), 4.39 (2 H, q, J = 7.5 Hz), 5.94 (1 H, dd, J = 14.5 Hz, 
J = 8.5 Hz), 7.91 (1 H, dd, / = 14.5 Hz, J = 12.5 Hz), 
9.41 (1 H, br d, J = 12.5 Hz), 9.65 ppm (1 H, d, / = 8.5 
Hz); J W C C ' 4 3417 m, 1744 s, 1662 m, 1638 vs, and 1140 

(s) cm Wn 
ether 257nm(e ~3.6 X 10 4 ) ;M + 143. 

When a 9% solution of 2 in benzene was passed through a 
quartz tube7 heated to 650°, a 27% yield8 was attained of a 
colorless oil, 1: c m a x

c c l 4 1801 m, 1777 s, 1619 s, 1549 m, 
1219 s, and 1111 ( S ) C m - 1 J N M R ( C C l 4 ) ^ e J S (1 H, dd, J 
= 7.2 Hz, J = 1.8 Hz), 7.78 (1 H, d, J = 7.2 Hz), and 8.09 
(1 H, br s); M + 97; M + - CO, 69; M + - (CO + HCN), 
42; Xn 

ethe 262.5 (e ~10 4 ) . 9 Compound 1 is very sensitive 
to moisture and undergoes ready hydrolysis to cis-2-(for-
mylamino)acrylic acid (5), characterized as its methyl ester 
6: mp 42°; NMR (CDCl3), 8 3.78 (3 H, s), 5.27 (1 H, d, J 
= 9.3 Hz), 7.60 (1 H, dd, J = 11.5 Hz, J = 9.3 Hz), 8.43 
(1 H, br s), and 10.44 (1 H, broad); ( w c c ' 4 3320 m, 1719 
m, 1690 s, 1638 s, 1205 (s) cm - 1 ; Xmax

ether 264 nm (« ~1.7 
X 10 4 ) ;M + 130. 

Preliminary studies of the thermal behavior of 2 in chlo­
roform indicate that 2 is labile at even 75°, and gives rise to 
a mixture whose infrared spectrum shows a band at 2250 
cm - 1 , typical of isocyanate functionality.'1 Possibly this ob­
servation provides a clue to the remarkable conversion of 2 
to 1 which may be mediated by the /?-isocyanatoacrolein 
( 7 ) 10-12 

Irradiation of argon matrix-isolated 1 ( M / R ~ 300) with 
Pyrex-filtered mercury lamp light produces a species with 
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intense bands centered at 2140 c m - 1 ( = C = 0 ) , as well as a 
substance(s) possessing absorption at 1878 s and 1840 s (/3-
lactone carbonyl), 1243 m, 1058 s, 928 w, 917 w, 881 s, and 
870 (s) cm '. Destruction of these species (tentatively for­
mulated as 8 and 11, respectively), is accomplished by irra­
diation through a water filter leading to hydrogen cyanide, 
acetylene, and carbon dioxide. From the preliminary re­
sults, the photochemical behavior of 1 appears to be similar 
to that of a-pyrone,13 and is the object of further study in 
our laboratories.14 

Acknowledgment is made to the donors of the Petroleum 
Research Fund, administered by the American Chemical 
Society, and to the National Science Foundation for sup­
port of this research. Special thanks are due Mr. Joe Laure-
ni for preliminary experiments on the photochemistry of 1. 
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Concerning Criticisms of MINDO/3 by Pople1 and 
Hehre2 

Sir: 

Pople1 bases his criticisms of M I N D O / 3 3 on calculated 
heats of reaction for 16 processes, mostly artificial, in 11 of 
which the errors in the M I N D O / 3 values are large. This is 
not surprising since they involve three compounds (CH4, 
C(CHa)4 , C H 3 C = C C H 3 ) for which the errors in the 
M I N D O / 3 heats of formation are unusually great. Since 
we not only tabulated the errors in our papers but also drew 
specific attention to them in the text,4 it is not clear to us 
what further point Pople is trying to make. 

The Hartree-Fock values cited by Pople1 were derived 
from 6-31 G* or 4-31 G calculations of energies of mole­
cules, using assumed geometries. We might point out that 
there seems to be no difficulty in getting reasonably accu­
rate estimates of molecular energies by semiempirical 
methods if one is willing to make such assumptions. This is 
illustrated in Table I by a comparison of Pople's results for 
his 16 reactions with those calculated by M I N D O / 1 . 5 The 
standard deviations for the nine reactions for which data 
are available by both methods are 3.22 (HF) and 1.75 
(MINDO/1) kcal/mol, respectively. Note that M I N D O / 1 
represented only a preliminary version. We did not pursue 
this approach further because of the limited scope of a 
treatment in which geometries are not optimized. With re-

Table I. Comparison of Errors in Heats of Reaction Calculated by 
ab Initio SCF and MINDO/1 Methods 

Error in calcd heat of 
reaction (kcal/mol) 

Reaction 

CH3CH3 + H 2 ^ 2CH4 

CH 2=CH 2 + 2CH4 -» 2CH3CH3 

HC=CH + 4CH4 - 3CH3CH3 

CH3CH2CH3 + CH4 - 2CH3CH3 

CH3(CH2)2CH3 + 2CH4 -
3CH3CH3 

CH3(CH2)3CH3 + 3CH4 -
4CH3CH3 

CH3CH=CH2 + CH4 -
CH 3 CH 3 +CH 2 =CH 2 

CH3Cs=CH + CH4 -* 
CH3CH3 + HC=CH 

H 2 C=C=CH 2 +CH 4 -* 
2CH2=CH2 

CH3CH=CH2 ^ A 
C H 3 C S C H - A 

CH(CH3), - Aj-C4H10 

C ( C H 3 ) , - K - C 5 H 1 2 

-C -H 
f-f - H3CC=CCH3 

C6H6 + 6CH4 -* 3CH3CH3 + 

"Hartree-
Fock" 

-6 .4 
-5 .3 

-12.1 
-1 .2 
-4 .0 

— 

-1 .3 

0.4 

-1 .2 

0.0 
3.5 
1.5 

-
-1 .0 

-2 .1 

+1.4 

MINDO/1 

+0.2 
-1 .6 

-
0.0 

-1 .1 

-1 .4 

+ 1.0 

-

-

+3.3 
-

-0 .4 
+1.4 

+1.6 

-

+3.0 

gard to ref 2, it is surprising that no reference is made to 
calculations of bond lengths. Moreover the major errors he 
cites again occur in cases to which we have drawn specific 
attention in our papers. 

Since very extensive tests of MINDO/3 have been pub­
lished,3 including applications to a wide variety of chemical 
reactions,6 there seems no need for further comment.7 
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Catalytic Electrochemical Reduction of Acetylene in 
the Presence of a Molybdenum-Cysteine Complex 

Sir: 

A chemical model for nitrogenase enzyme1 based on the 
binuclear molybdenum(V)-cysteine complex, Na2Mo2-
04(Cys)2 ( I ) , 2 has been shown to be effective in the catalyt­
ic reduction of nitrogenase substrates. A Mo(IV)-cysteine 
monomer, produced by reduction of 1 with NaBH.4 or 
Na2S204, has been proposed lb as the active species respon­
sible for binding and reducing substrates such as acetylene. 
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